Answer:
19
Step-by-step explanation:
f(x)=2/3
2/3=-1/3x+7
Subtract 7 from both sides
2/3-7=-1/3x
-6 1/3 = -1/3x
Multiply both sides by -3
-3(-6 1/3)=-1/3x(-3)
19 = x
We have that
point C and point D have y = 0-----------> (the bottom of the trapezoid).
point A and point B have y = 4e ---------- > (the top of the trapezoid)
the y component of midpoint would be halfway between these lines
y = (4e+ 0)/2 = 2e.
<span>the x component of the midpoint of the midsegment would be halfway between the midpoint of AB and the midpoint of CD.
x component of midpoint of AB is (4d + 4f)/2.
x component of midpoint of CD is (4g + 0)/2 = 4g/2.
x component of a point between the two we just found is
[(4d + 4f)/2 + 4g/2]/2 = [(4d + 4f + 4g)/2]/2 = (4d + 4f + 4g)/4 = d + f + g.
</span>therefore
the midpoint of the midsegment is (d + f + g, 2e)
Answer:

Step-by-step explanation:
To find the exact solution, find the equation for each line. And solve for x and y.
To do this, represent each equation in the slope-intercept form, y = mx + b. Where m is the slope, and b is the y-intercept.
✍️Equation 1 for the line that slopes upwards from left to your right:
Slope = 
b = the point at which the y-axis is intercepted by the line = 7
Substitute m = 2 and b = 7 in y = mx + b
Equation 1 would be:
✔️y = 2x + 7
✍️Equation 2 for the line that slopes downwards from left to your right:
Slope = 
b = the point at which the y-axis is intercepted by the line = 1
Substitute m = -3 and b = 1 in y = mx + b
✔️Equation 2 would be:
y = -3x + 1
✍️Solve for x and y:
✔️To solve for x, substitute y = -3x + 1 in equation 1.
y = 2x + 7
-3x + 1 = 2x + 7
Collect like terms
-3x - 2x = 7 - 1
-5x = 6
Divide both sides by -5

✔️To solve for y, substitute x = -1⅕ in equation 2.
y = -3x + 1





✅The exact solution would be: 
Answer:
-0.5
Step-by-step explanation:
Use the average formula:
Sum of all numbers/Number of items
6 + (-7) / 2
= -1/2
So, the number in the middle of -7 and 6 is -0.5