<span>Point mutations are of two types: Substitutions of bases that are the change of one base of DNA by another. And Transitions that are replaced on a pyrrhic basis by another pyrrhic or a pyrimidine by another pyrimidine. Transversions: substitution of a pyrrhic base by another pyrimidine or vice versa. These mutations are negative because they affect only one of the nucleotides, and therefore, only one triplet of bases are affected. When the mutation does not affect the individual it is a silent mutation. Chromosomal mutations Changes in the structure of the diploid chromosomes, where one of the chromosomes has a mutation, will have another normal. They can hinder the process of meiosis in the carrier since it hinders the correct pairing of the homologous chromosomes. It would produce an unfeasible offspring or with mutations.</span>
I believe the awnser is B
Forming glycogen as energy storage in the liver is an example of anabolism.
<h3>What is anabolism?</h3>
Anabolism is a metabolic process that consists of the construction and manufacture of more complex molecules from simpler molecules. This contributes to cell growth and energy storage for tissue maintenance.
The process of anabolism can be seen in processes such as the formation of triglycerides or glycogen for energy reserves within cells or in the formation of muscle proteins, given in the sports world.
In these anabolic processes, a lot of energy is consumed since much more complex molecules are being manufactured.
It is a totally opposite and complementary process to catabolism, in which these complex molecules are broken down into much simpler molecules and the release of energy is generated.
For a correct homeostasis of the body, these two processes have to be balanced and work in a <u>complementary way.</u>
Therefore, we can confirm that forming glycogen as energy storage in the liver is an example of anabolism.
To learn more about anabolism visit: brainly.com/question/16793262?referrer=searchResults
#SPJ1
Answer:
There made up of multiple cells
Explanation:
Answer:
C. THE CONVERSION OF FRUCTOSE 1,6-BISPHOSPHATE to fructose- 6- phosphate is not catalyzed by phosphofructokinase -1, the enzyme involved in glycolysis.
Explanation:
This statement is true as the enzyme involved in this step is FRUCTOSE-1,6-BISPHOSPHATASE.
Gluconeogenesis is the coversion of non-carbohydrate molecules (lactic acid, amino acids, glycerol) through the pyruvic acid into glucose in the cells.
This process takes place mainly in the liver and occurs during periods of fasting, starvation, low carbohydrate diets.
The pathway of gluconeogenesis involves eleven steps of enzymatic catalyzed reactions.
In the conversion of fructose 1,6- bisphosphate to fructose-6-phosphate is catalyzed by fructose 1,6-bisphosphatase and not by phosphofructokinase -1 which is involved in glycolysis. This step is a rate-limiting step of the pathway.
The conversion of glucose-6-phospahte to glucose is not catalyzes by hexokinase but glucose -6- phosphatase.