Answer: 7/3
Step-by-step explanation:
21/9
7/3 is the fraction in simplest form
Answer:
-2
Step-by-step explanation:
By definition, the remainder is the portion of the dividend that is not evenly divisible by the divisor. Basically, it is what's left over. In this case, -2 is the amount left over after dividing this equation.
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
To solve this problem, let us recall that the formula for
probability is:
Probability = total number of successful events / total
events
Where in this case, an event is considered to be successful
if the sum is 3 on the pair of six sided dice.
First, let us calculate for the total number of events. There
are 6 numbers per dice, therefore the total number of combinations is:
total events = 6 * 6 = 36
Next, we calculate for the total number of combinations
that result in a sum of 3. We can identify that there are only two cases that
result in sum of 3. That is:
1st case: first dice rolls 1, second dice
rolls 2
2nd case: first dice rolls 2, second dice
rolls 1
Hence, total number of successful events = 2. Therefore the
probability is:
Probability = 2 / 36 = 1 / 18 = 0.0556 = 5.56%