1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
2 years ago
15

Alex jogs 5,000 meters twice a day. How many kilometers does Alex jog each day?

Mathematics
1 answer:
murzikaleks [220]2 years ago
3 0

1 kilometer = 1000 meters

5000 meters / 1000 = 5 kilometers


5 kilometers x 2 times per day = 10 kilometers per day.


answer: D) 10 kilometers

You might be interested in
Three-quarters of a pound of candy cost 66 cents. Find the cost of one pound<br> of candy.
konstantin123 [22]

Answer:

$0.88 per pound

Step-by-step explanation:

you want to divide the 3/4 pounds by 3, and when you do that, you also have to divide the 66 cents by 3 as well, then multiply the 1/4 you get from dividing 3/4 by 3, and multiply it by 4 to get 1 pound, but when you do that, you have to do the same thing with the 22 cents you get from dividing 66 cents by 3, which will give you 88 cents per pound

6 0
2 years ago
Helena needs 3.5 cups of flour per loaf of bread and 2.5 cups of flour per batch of muffins. She also needs 0.75 cup of sugar pe
vesna_86 [32]
Let
 x = loaves of bread
 y = batches of muffins
 You must make a system of two equations with two unknowns that describe the problem
 3.5x + 2.5y = 17 --- (1)
 0.75x + 0.75y = 4.5 --- (2)
 Resolving we have
 x = 6-y (from (2))
 replacing in (1)
 3.5 (6-y) + 2.5y = 17
 21 - 3.5y + 2.5y = 17
 y = 21-17 = 4
 Then substituting in (2)
 x = 6-y = 6-4 = 2
 Answer
 Helena could bake:
 2 loaves of bread
 4 batches of muffins
8 0
3 years ago
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
A football stadium holds 52,000 fans. A college student is doing research and determines that on any given game day, the home te
Kamila [148]
Hi!!
The answer to your question is asking us to  make an algerbraic equation for this situation.
H = 5V
Also, H + V = 52,000. H and V can then be solves by solving the 2 equations.
The results are 43,333 and 8,667
If you still don't understand message me
If you do plz brainlest
8 0
3 years ago
Read 2 more answers
Divide the following polynomial using synthetic division, then place the answer in the proper location on the grid. Write answer
MAXImum [283]
-4 1. -8. 24. 12. 40 -4. 48. -288. 1104 1 -12. 72. -276. R1144 ANSWER: X^3-12x^2+72x-276+1144/x+4
8 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the inequality x^2 -2x - 8 &gt;0​
    7·1 answer
  • Which one would be the number line ???????
    8·2 answers
  • Sorry can someone help please…
    11·1 answer
  • What is (3+x)(4+x) in standard form ?
    6·1 answer
  • Andy is scuba diving. He starts at sea level and then descends 10 feet in 2 1/2 minutes. Represent Andy's descent in feet per mi
    10·1 answer
  • Round 69,814 to the nearest hundred
    13·1 answer
  • QUIZ 2 - GEOMETRY
    14·1 answer
  • Write an expression to determine the length of the room in yards
    12·1 answer
  • HELP <br> The solutions to the equation<br><br> 2cosθ−sinθ=0<br><br> for 0∘≤θ≤360∘ are
    11·1 answer
  • Solve pls brainliest
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!