interior angle of a regular 18-gon.
It is easier to calculate the exterior angle of a regular polygon of n-sides (n-gon) by the relation
exterior angle = 360/n
For a 18-gon, n=18, so exterior angle = 360/18=20 °
The value of each interior angle is therefore the supplement, or
Interior angle = 180-20=160 degrees.
Naming of a 9-gon
A polygon with 9 vertices is called a nonagon (in English) or enneagon (French ennéagone, but the English version is sometimes used)
You had a good start with the correct answer.
Exterior angle of a 15-gon
The exterior angle of a 15-gon can be calculated using the relation given in the first paragraph, namely
Exterior angle = 360/15=24 degrees
Answer:
<u>m</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u><u> </u><u>and</u><u> </u><u>c</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>
Step-by-step explanation:
• Let's first phrase out the general equation of a line

- m is the slope
- c is the y-intercept
[ remember that a general line equation must be in slope - intercept form as shown above ]
• from our question, we are given the equation;

• let's make y the subject in order to make the equation in slope - intercept format.
→ <em>r</em><em>e</em><em>m</em><em>e</em><em>m</em><em>b</em><em>e</em><em>r</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>p</em><em>p</em><em>l</em><em>y</em><em> </em><em>"</em><em>s</em><em>u</em><em>b</em><em>j</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>a</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em><em>k</em><em>n</em><em>o</em><em>w</em><em>l</em><em>e</em><em>d</em><em>g</em><em>e</em><em>"</em>

• The above boxed equation is now a general equation. Let's extract out slope, m and y-intercept, c

Answer:
2.34
Step-by-step explanation:
9.36÷4 =2.34
you divide on 4as showen