Step-by-step explanation:
The equation of a parabola with focus at (h, k) and the directrix y = p is given by the following formula:
(y - k)^2 = 4 * f * (x - h)
In this case, the focus is at the origin (0, 0) and the directrix is the line y = -1.3, so the equation representing the cross section of the reflector is:
y^2 = 4 * f * x
= 4 * (-1.3) * x
= -5.2x
The depth of the reflector is the distance from the vertex to the directrix. In this case, the vertex is at the origin, so the depth is simply the distance from the origin to the line y = -1.3. Since the directrix is a horizontal line, this distance is simply the absolute value of the y-coordinate of the line, which is 1.3 inches. Therefore, the depth of the reflector is approximately 1.3 inches.
Answer:
About 40 students are left handed
Step-by-step explanation:
Answer:
28 members up in that club have voted.
I am not sure I am right but I think it depends on the size of the X.
X^3 - h^3 + 8 because you cube the variables as well as 2, and 2x2x2=8.