It would 47.7 because you would have to both minus the number together.
<span>In one atom, the ionization energy is the</span> energy needed remove one electron.
Molar mass:
HF = 1 + 19 = 20.0 g/mol
Number of moles :
124 / 20.0 => 6.2 moles
Volume = 2.4 L
M = n / V
M = 6.2 / 2.4
M = 2.6 M
Answer A
hope this helps!
11. ionic charge +1, helium.
12. ionic charge 2-, neon.
13. ionic charge 3+, neon.
Answer:
0.11%
Explanation:
Without mincing words, let us dive straight into the solution to the question/problem. The first step to solve this question is to write out the chemical reaction, that is the reaction showing the dissociation of acetic acid.
CH3COOH <=======================================> CH3COO⁻ + H⁺
Initially, the amount present in the acetic acid which is = 12M, the concentration for CH3COO⁻ and H⁺ is 0 respectively.
At equilibrium, the amount present in the acetic acid which is = 12 - x, the concentration for CH3COO⁻ = x and H⁺ = x respectively. Note that the ka for acetic acid = 1.8 × 10⁻⁵.
1.8 × 10⁻⁵ = x²/ 14 - x. Therefore, x = 0.0158 M.
The next thing to do is to calculate for the percentage of dissociation, this can be done as given below:
percentage of dissociation = x/14 × 100. Recall that the value that we got for x = 0.0158 M. Hence, the percentage of dissociation = 0.0158 M/ 14m × 100 = 0.11%