The minimum value for g(x)=x² - 10x + 16 is -9
<h3>How to determine the minimum value?</h3>
The function is given as:
g(x)=x² - 10x + 16
Differentiate the function
g'(x) = 2x - 10
Set the function 0
2x - 10 = 0
Add 10 to both sides
2x = 10
Divide by 2
x = 5
Substitute 5 for x in g(x)
g(5)=5² - 10*5 + 16
Evaluate
g(5) = -9
Hence, the minimum value for g(x)=x² - 10x + 16 is -9
Read more about quadratic functions at:
brainly.com/question/7784687
Answer:
415
Step-by-step explanation:
the nth term of the sequence is -13 + 4n
the sequence is an arithmetic progression with nth term a + (n - 1)d
a = -9, d = a5- a4 = 7 -3 =4
nth = -9 + (n -1) 4
= -9 + 4n -4
= -13 + 4n
hence the 107th term; -13 + 4*107
-13 + 428 = 415
Answer:
The quotient is
answer (D)
Step-by-step explanation:
÷ 
In division with fractions we reverse the fraction after division sign and change division sign to multiplication sine
× 
× 

Answer:
iiiii
Step-by-step explanation: