1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
9

I also need help with this math problem.

Mathematics
1 answer:
vazorg [7]2 years ago
8 0

Answer:

absolute devlation is

1, 1 + 5+9,4+1, 2+8,1+4,3

Step-by-step explanation:

=4,9

95,5 -> 105 3

have a nice day

You might be interested in
13(10 + 2) could be used to simplify which of the following problems?
Veseljchak [2.6K]
Well first you need to show the rest of the problems before i can truely help you sorry.
6 0
3 years ago
Helphelphelphelphelp​
harina [27]

Answer:

1.) Gallon

2.) Pound

3.) Foot

Step-by-step explanation:

Hope this helps :)

3 0
4 years ago
NEED HELP ASAP! HURRY!
Aleks04 [339]

Answer:

B, C

Step-by-step explanation:

Both these intervals are where the graph is increasing.

6 0
3 years ago
Audra is 5 years older than carly. Brenda is 3 years younger than twice carlys age. The sum of of their ages is 26. How old is e
egoroff_w [7]

Audra is 11

Brenda is 9

Carly is 6

5 0
3 years ago
Prove :
Sauron [17]

Answer:

See Below.

Step-by-step explanation:

We want to verify the equation:

\displaystyle \frac{1}{\sec\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

We can convert sec(α) to 1 / cos(α):

\displaystyle \frac{1}{1/\cos\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Multiply both layers of the first fraction by cos(α):

\displaystyle \frac{\cos\alpha}{1+\cos\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Create a common denominator. We can multiply the first fraction by (1 - cos(α)):

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{(1+\cos\alpha)(1-\cos\alpha)}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Simplify:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{1-\cos^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

From the Pythagorean Identity, we know that cos²(α) + sin²(α) = 1 or equivalently, 1 - cos²(α) = sin²(α). Substitute:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{\sin^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}

Subtract:

\displaystyle \frac{\cos\alpha(1-\cos\alpha)-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Distribute:

\displaystyle \frac{\cos\alpha-\cos^2\alpha-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Rewrite:

\displaystyle \frac{(\cos\alpha)-(\cos^2\alpha+\cos\alpha)}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Split:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos^2\alpha+\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor the second fraction, and substitute sin²(α) for 1 - cos²(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{1-\cos^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Factor:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{(1-\cos\alpha)(1+\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Cancel:

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha}{(1-\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Divide the second fraction by cos(α):

\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}=\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}

Hence proven.

7 0
3 years ago
Other questions:
  • the ratio of the measures of three angles in a triangle is 10:3:7 find the measure of the largest angle
    8·1 answer
  • ABC is an isosceles triangle with angle ABC 52 degrees
    6·1 answer
  • the points j(-8,9) and k(-2,-5) are endpoints of a diameter of circle C. What equation would represent circle C
    11·1 answer
  • On a number​ line, suppose the coordinate of A is​ 0 and AR=21. What are the possible coordinates of the midpoint of AR?
    12·1 answer
  • Factor completely x3 – 8 A) (x – 2)(x2 + 2x + 2) B) (x – 2)(x2 + 2x + 4) C) (x – 2)(x2 + 4x + 4) D) (x – 2)(x2 + 4x + 8)
    14·1 answer
  • Select the correct answer.<br> Which rate is equivalent to <br> 72/9?
    15·2 answers
  • What is the length of the hypotenuse of the right triangle? Enter your answer in the box.
    15·2 answers
  • ( PLEASE HELP )Use the table to write a proportion .
    14·1 answer
  • Evaluate the expression for the given variable <br>40-(6x+8) when x=2​
    15·2 answers
  • Frrrrrrrrreee points​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!