Answer:
The force required to maintain an object at a constant velocity in free space is equal to Zero.
Answer:
Option C. The force between them would be 4 times larger than with the
initial masses.
Explanation:
To know which option is correct, we shall determine the force of attraction between the two masses when their masses are doubled. This can be obtained as follow:
From:
F = GMₐM₆/ r²
Keeping G/r² constant, we have
F₁ = MₐM₆
Let the initial mass of both objects to be m
F₁ = MₐM₆
F₁ = m × m
F₁ = m²
Next, let the masses of both objects doubles i.e 2m
F₂ = MₐM₆
F₂ = 2m × 2m
F₂ = 4m²
Compare the initial and final force
Initial force (F₁) = m²
Final (F₂) = 4m²
F₂ / F₁ = 4m² / m²
F₂ / F₁ = 4
F₂ = 4F₁ = 4m²
From the above illustrations, we can see that when the mass of both objects doubles, the force between them would be 4 times larger than with the
initial masses.
Thus, option C gives the correct answer to the question.
Answer:
Velocity will be equal to 7.31 m/sec
Explanation:
We have given mass of the student m = 61 kg
Height of the water slide h = 12.3 m
Acceleration due to gravity 
Potential energy is equal to 
Work done due to friction = -5800 J
So energy remained = 7352.94-5800 = 1552.94 J
This energy will be equal to kinetic energy
So 


v = 7.13 m/sec
Answer:
3.30 x 10^-7 Pascal
Explanation:
distance r = 1.5 m
power P = 700 W
the radiation pressure is given as
Pr = P/A*c
where
area of the surface A = 4πr^2
calculate for A
speed of light is c = 3×10^8 m/s
plugging above values in equation above gives
Pr = 3.30 x 10^-7 Pascal
Answer:
See in explanation
Explanation:
Scientific use: The Einstein's THEORY of relativity states that "Time Is Absolute".
Everyday use: Einstein's LAW of relativity says that time is not the same at all places and events.