Answer:
m∠C = 44°
Step-by-step explanation:
In ΔCDE,
m∠C=(4x−16) ∘
m∠D=(6x−1) ∘
m∠E=(4x−13) ∘ .
The sum of angles in a triangle = 180°
Step 1
We solve for x
m∠C + m∠D + m∠E
(4x−16)° + (6x−1)° + (4x−13)° = 180°
4x - 16 + 6x - 1 + 4x - 13 = 180°
4x + 6x + 4x -16 - 1 - 13 = 180°
14x - 30 = 180°
14x = 180+ 30
14x = 210
x = 210/14
x = 15
Step 2
Find m∠C
m∠C = (4x−16)°
m∠C = (4 × 15 - 16)°
m∠C = (60 - 16)°
m∠C = 44°
Cancel y values
multiply 2nd equation by 4 and add to first
-9x+4y=8
<u>-12x-4y=16 +</u>
-21x+0y=24
-21x=24
divide both sides by -21
x=24/-21
x=-8/7
C is answer
One way to make it easier to multiply, pick a number from a multiplication problem. Then, add the amount of times of the other number.
Example:
6 x 8 = ?
8 = Chosen Number
So, add 8, 6 times.
8 + 8 + 8 + 8 + 8 + 8 = ?
? = 48
Which, 6 x 8 does equal 48.
Answer: 0.0386
Step-by-step explanation:
Given: The population of 400 tall women has a mean height
of 179.832 cm and a standard deviation
of 12.192 cm.
Let X be a random variable that represents the height of woman.
Sample size : n= 50
The probability that the mean for this sample group is above 182.88 will be :
![P(\overline{X}>182.88)\\\\=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{182.88-179.832}{\dfrac{12.192}{\sqrt{50}}})\\\\ =P(Z>1.7678)\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=1-P(Z](https://tex.z-dn.net/?f=P%28%5Coverline%7BX%7D%3E182.88%29%5C%5C%5C%5C%3DP%28%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%3E%5Cdfrac%7B182.88-179.832%7D%7B%5Cdfrac%7B12.192%7D%7B%5Csqrt%7B50%7D%7D%7D%29%5C%5C%5C%5C%20%3DP%28Z%3E1.7678%29%5C%20%5C%20%5C%20%5BZ%3D%5Cdfrac%7B%5Coverline%7BX%7D-%5Cmu%7D%7B%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5D%5C%5C%5C%5C%3D1-P%28Z%3C1.7678%29%5C%5C%5C%5C%3D1-0.9614%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20p-value%20table%7D%5D%5C%5C%5C%5C%3D%200.0386)
Hence, Required probability = 0.0386