Answer:

Step-by-step explanation:
We are given that a function

We have to find the average value of function on the given interval [1,e]
Average value of function on interval [a,b] is given by

Using the formula

By Parts integration formula

u=ln x and v=dx
Apply by parts integration
![f_{avg}=\frac{1}{e-1}([xlnx]^{e}_{1}-\int_{1}^{e}(\frac{1}{x}\times xdx))](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28%5Bxlnx%5D%5E%7Be%7D_%7B1%7D-%5Cint_%7B1%7D%5E%7Be%7D%28%5Cfrac%7B1%7D%7Bx%7D%5Ctimes%20xdx%29%29)
![f_{avg}=\frac{1}{e-1}(elne-ln1-[x]^{e}_{1})](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28elne-ln1-%5Bx%5D%5E%7Be%7D_%7B1%7D%29)

By using property lne=1,ln 1=0

Answer:
bottom side (a) = 3.36 ft
lateral side (b) = 4.68 ft
Step-by-step explanation:
We have to maximize the area of the window, subject to a constraint in the perimeter of the window.
If we defined a as the bottom side, and b as the lateral side, we have the area defined as:

The restriction is that the perimeter have to be 12 ft at most:

We can express b in function of a as:

Then, the area become:

To maximize the area, we derive and equal to zero:

Then, b is:

1.. Plug in f... 4 - (2 x 1).
2.. Multiply 2 x 1... 4 - 2
3.. Subtract... 4 - 2 = 2
The answer is 2
a whole, fraction wise, is always 1, so in this case we're looking at a whole of 5/5 = 1, and she withdrew 3/5, so what remained is 2/5
