The value of the integral is 343π/3 by changing to polar coordinates. √(49 − x2 − y2) dA where r = (x, y) | x2 y2 ≤ 49, x ≥ 0
<h3>What is integration?</h3>
It is defined as the mathematical calculation by which we can sum up all the smaller parts into a unit.
We have the integral:

Where, r = (x, y) | x2 y2 ≤ 49, x ≥ 0
The polar coordinate will be:
x = rcosθ
y = rsinθ
Where x²+y²= r²
Put the value of x and y in the integral, and the limits will be:
r²≤49 or 0≤r≤7, -π/2≤θ≤π/2 ( since x ≥0)
dA = rdrdθ
![\int\limits \int\limits_R {\sqrt{49-x^2-y^2}} \, dA = \int\limits^{\dfrac{\pi}{2}}_{\dfrac{-\pi}{2}} \int\limits^7_0 {\sqrt{49-r^2]} \, rdrd\theta](https://tex.z-dn.net/?f=%5Cint%5Climits%20%5Cint%5Climits_R%20%7B%5Csqrt%7B49-x%5E2-y%5E2%7D%7D%20%5C%2C%20dA%20%3D%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B2%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B2%7D%7D%20%20%5Cint%5Climits%5E7_0%20%7B%5Csqrt%7B49-r%5E2%5D%7D%20%5C%2C%20rdrd%5Ctheta)
After solving the double integration, we will get:

Thus, the value of the integral is 343π/3 by changing to polar coordinates. √(49 − x2 − y2) dA where r = (x, y) | x2 y2 ≤ 49, x ≥ 0
Learn more about integration here:
brainly.com/question/18125359
#SPJ4