Multiply equation II by 2 and then add up the equations.
Answer:
y=68.38172757
Step-by-step explanation:
Take the inverse cosine of both sides of the equation to extract
y from inside the cosine.
y=arccos(7/19)
y=68.38172757
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from
360 to find the solution in the fourth quadrant. y=360−68.38172757
y=68.38172757+360n,291.61827242+360n, for any integer n
Answer:
n = 12
Step-by-step explanation:
4/6 = 8/n
4n = 48
n = 12
<span>The discriminant of a quadratic equation is the b^2-4ac portion that the square root is taken of. If the discriminant is negative, then the function has 2 imaginary roots, if the discriminant is equal to 0, then the function has only 1 real root, and finally, if the discriminant is greater than 0, the function has 2 real roots. So let's look at the equations and see which have a positive discriminant.
f(x) = x^2 + 6x + 8
6^2 - 4*1*8
36 - 32 = 4
Positive, so f(x) has 2 real roots.
g(x) = x^2 + 4x + 8
4^2 - 4*1*8
16 - 32 = -16
Negative, so g(x) does not have any real roots
h(x) = x^2 – 12x + 32
-12^2 - 4*1*32
144 - 128 = 16
Positive, so h(x) has 2 real roots.
k(x) = x^2 + 4x – 1
4^2 - 4*1*(-1)
16 - (-4) = 20
Positive, so k(x) has 2 real roots.
p(x) = 5x^2 + 5x + 4
5^2 - 4*5*4
25 - 80 = -55
Negative, so p(x) does not have any real roots
t(x) = x^2 – 2x – 15
-2^2 - 4*1*(-15)
4 - (-60) = 64
Positive, so t(x) has 2 real roots.</span>