<u>Given</u>:
Given that the data are represented by the box plot.
We need to determine the range and interquartile range.
<u>Range:</u>
The range of the data is the difference between the highest and the lowest value in the given set of data.
From the box plot, the highest value is 30 and the lowest value is 15.
Thus, the range of the data is given by
Range = Highest value - Lowest value
Range = 30 - 15 = 15
Thus, the range of the data is 15.
<u>Interquartile range:</u>
The interquartile range is the difference between the ends of the box in the box plot.
Thus, the interquartile range is given by
Interquartile range = 27 - 18 = 9
Thus, the interquartile range is 9.
No because 77 is greater than the lowest number
<span>The correct answer to your question is... a rational #, because w</span><span>hen you add two rational #'s, each # can be written as a rational #.
</span><span>
Reasoning:
So, adding two rational #'s like adding fractions will result in another fraction of this same form since integers are closed under + and x. Thus, adding two rational #'s produces another rational #.
By the way # means number.
</span>I hope this helps!
Please Rate & Thank!
Please mark as Brainliest!
Have a wonderful day! : )
Answer:
The whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square is 6 ft
Step-by-step explanation:
Here we are required find the size of the sides of a dunk tank (cube with open top) such that the surface area is ≤ 160 ft²
For maximum volume, the side length, s of the cube must all be equal ;
Therefore area of one side = s²
Number of sides in a cube with top open = 5 sides
Area of surface = 5 × s² = 180
Therefore s² = 180/5 = 36
s² = 36
s = √36 = 6 ft
Therefore, the whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square = 6 ft.
Zero depending on what axis it’s on