Answer:
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Answer:
Nutz in my opinion
Step-by-step explanation:
Answer:
See below
Step-by-step explanation:
We want to prove that

Taking the RHS, note

Remember that

Therefore,

Once

Then,

Hence, it is proved
13 + 23 · (19 - 7)
Do the parentheses first.
13 + 23 · (12)
Now do multiplication.
13 + 276 = 289
The answer is D) 289.
Answer:
It's 51.2
Step-by-step explanation:
All u gotta do is subtract 54 - 2.8