Answer:
Yes, the shapes are similar. Note, the angles are equivalent and the sides are scales of each other satisfying the requirements for similarly.
Step-by-step explanation:
For a shape to be similar there are two conditions that must be met. (1) Must have equivalent angles (2) Sides must be related by a scalar.
In the two triangles presented, the first condition is met since each triangle has three angles, 90-53-37.
To test if the sides are scalar, each side must be related to a corresponding side of the other triangle with the same scalar.
9/6 = 3/2
12/8 = 3/2
15/10 = 3/2
Alternatively:
6/9 = 2/3
8/12 = 2/3
10/15 = 2/3
Since the relationship of the sides is the scalar 3/2 (Alternatively 2/3), then we can say the triangles meet the second condition.
Given that both conditions are satisfied, then we can say these triangles are similar.
Note, this is a "special case" right triangle commonly referred to as a 3-4-5 right triangle.
Cheers.
So if we think of a test tube, it looks sort of like a cylinder. This means that its cross-section would be a circle. To find out how many turns a piece of thread would make around the test tube, we need to find the circumference of the test tube, then divide the length of the string by the circumference.
Step 1) Find the circumference
C = pi x diameter
C = 3.14 x 3
C = 9.42
Step 2) Divide the length of the string by the circumference
90.42 / 9.42 = 9.5987
The string would make approximately 9.60 turns around the test tube.
Hope this helps!! :)
Answer:
Parallel
Step-by-step explanation:
These 2 lines are parallel because they have the same slope (7).
Answer:
A
Step-by-step explanation: