Answer:
a: z = -1.936
b: 0.0265
d: z < -1.645
Reject H0 if z < -1.645
Step-by-step explanation:
We are given:
H0: µ = 20
HA: µ < 20
n = 60, sample mean: 19.6, σ = 1.6
Since the alternate hypothesis has a < sign in it, it is a left tailed test. The < or > sign in the alternate hypothesis points towards the rejection region.
For a: We need to calculate the test statistic for our situation. This is done with a z-score formula for samples.
For b: we need to use the z-score table to look up the p-value for the score we calculate in part a. The p-value is 0.0265. This means that there is only about a 2.65% chance that the sample values were a result of random chance.
For d: Since the significance level is 0.05, and this is a one tailed test, we have a critical value of z < - 1.645. This means that if the z-score we calculate in part a is less than -1.645, we will reject the null hypothesis
See attached photo for all the calculations!
Answer:
The table with 10 people and 4 pizzas
Step-by-step explanation:
Answer:
good question
did i ask shut man stop cheating
\left[x \right] = \left[ -18\right][x]=[−18]equation of a line that is parallel
Answer:
I. B. P = – + 40x
II. 1.3
hope this helps! :o)
Step-by-step explanation: