Antibodies, also called immunoglobulins, are proteins manufactured by the body that help fight against foreign substances called antigens. When an antigen enters the body, it stimulates the immune system to produce antibodies. (The immune system is the body's natural defense system.) The antibodies attach, or bind, themselves to the antigen and inactivate it.<span>
Read more: <span>http://www.scienceclarified.com/Al-As/Antibody-and-Antigen.html#ixzz4YlY105DD</span></span>
FALSE
In the currently accepted atomic model, an electron orbits around the nucleus is NOT in a clear, defined path.
Explanation:
According to modern atomic models, like the Bohr theory, it is difficult to know the exact location and path of an electron around the nucleus. This is partly because the mere act of observing the electrons changes its position. This is because the electrons have negligible mass and therefore ‘hitting’ them with any form of radiation for ‘illumination’ changes its position, behavior, and properties. In addition, the movement of electrons is very rapid such that by the time one observes the instantaneous location of an electron, if it was possible, it will have changed its position.
Therefore modern theories, such as VSPER, model atoms based on properties of where an electron will highly likely be found. This is how the shells and subshells of electrons (s, p, d, f) are modeled.
Learn More:
For more on modern theories of the atom check out;
brainly.com/question/11363941
brainly.com/question/7622425
brainly.com/question/1698091
brainly.com/question/2796914
#LearnWithBrainly
They are alike because both tell what was the truth about somthing.
Answer:
- Hydrogen ion concentration is lower in the mitochondrial matrix than in the intermembrane space.
- Oxidative phosphorylation relies on the hydrogen ion concentration gradient generated and maintained by the electron transport chain.
- Hydrogen ions enter the mitochondrial matrix via facilitated diffusion.
Explanation:
Oxidative phosphorylation is a metabolic pathway by which Adenosine Triphosphate (ATP) molecules are produced through the transfer of electrons from NADH or FADH2 to molecular oxygen (O2). The hydrogen (H+) ions are pumped from the mitochondrial matrix to the intermembrane space, and this movement of protons generates an electrochemical gradient across the mitochondrial membrane which is used by the ATP synthase to produce ATP. This gradient is generated by the movement of electrons through a series of electron carriers (e.g., cytochrome c and ubiquinone) that are embedded in the inner mitochondrial membrane. The movement of these H+ ions across the semipermeable mitochondrial membrane moving down their electrochemical gradient is named chemiosmosis and is an example of facilitated diffusion.