1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
2 years ago
15

What is the essence of calculus? *friendship​

Mathematics
2 answers:
sammy [17]2 years ago
6 0

Answer:

so what i think is that *friendship​Step-by-step explanation:

iragen [17]2 years ago
4 0

Differential Calculus, or Differentiation

If we have a function of one variable, ie of the form y=f(x), then in its most basic form differentiation is the study of how a small change in one variable x affects the other variable y.

As an real life example, consider the average speed of a moving car:

average speed = distance travelled/ time taken

Obviously, this is an average by definition, but if there existed a formal mathematical link between distance and time, could we build a function that would tell us the instantaneous velocity at every given moment? The study of differential calculus gives strategies for calculating the ratio of a little change in distance to a small change in time, and then calculating the real instantaneous speed by making the small change infinitely small.

Similarly if we wanted to find the gradient of the tangent to a curve at some particular point A we would estimate the gradient by using a chord to a nearby point B. As we move this nearby point B  closer to the tangent point A the slope of the chord approaches the slope of the tangent with more and more accuracy. Again differential calculus provides techniques for us to make the point B infinitesimally close to the point A o that we can calculate the actual gradient of the tangent.

Integral Calculus, or Integration

Suppose we wanted to calculate the area under a curve, y=f(x),  bounded the x =axis, and two points a and b. We could start by splitting the interval  [a,b]  into n regular strips, and estimating the area under the curve using trapezia (this is the essence of the trapezium rule which provides an estimate of such an area). If we increase n then generally we would hope for a better approximation. The study of integration provides techniques for us to take an infinitely large number of infinitesimally small strips to gain an exact solution.

The Fundamental Theorem of Calculus

Given the above two notions, it would appear that there is no connection between them at first., The Fundamental Theorem of Calculus, on the other hand, is a theorem that connects the rate of change of the area function (which determines the area under a curve) to the function itself. In other words, the area function's derivative equals the function itself.

Visual for  Fundamental Theorem of Calculus for integrals:

\int\limits^b_af {(x)} \, dx =F(b)-F(a).

where F is an antiderivative of f

Physics, Chemistry, all engineering sciences, statistics, economics, finance, biology, computer science, linguistics, to name but a few, are all areas that would be a desert without the use of calculus.

Leibnitz and Newton worked to define the velocity of a planet moving on a curved trajectory. That was not possible without calculus, and both had to invent differential calculus. Differential calculus allows to compare quantities along a curve, and thus their time rate of change.

All of classical physics can be summarized in this operation. Given second derivative (which is Force/mass), find the position as a function of time. This process is called integration. Half of calculus is made with integration, the other half with derivation. All of classical physics rests on these two parts of the calculus.

Quantum mechanics, quantum field theory, electromagnetism, fluid mechanics all use integration and derivation and much more. I rest my case. I hope this helps you gauge the place that calculus occupies in science.

You might be interested in
PLZZ HELPP WILL GIVE BRAINLIEST Graph the line y=25x+3. Use the line tool and select two points on the line. THIS IS A K12 TEST
Sophie [7]

Step-by-step explanation:

you can use any value either in place of x or y to find the corresponding coordinate but if you want to find the x and y intercept you can desigate x as zero and find the y intercept and vice versa.

so to find x and y intercept

y=25x+3. to find x intercept designate y as zero

0=25x+3

-3=25x

x= -3/25. p( -3/25,0)

y=25x+3 to find y intercept designate x as zero

y=25(0)+3

y=3. p(0,3)

the above y and x intercept indicates the points that the line of equation pass through when drawn graphically.

6 0
3 years ago
3 minutes North American wood turtle can travel about 17 yards
Yanka [14]
Minutes is the x axis and the yards the y axis  
3,17
5 0
3 years ago
Read 2 more answers
Turn 276% into a mixed number
AlladinOne [14]
Mixed number is (wholenumber)+(properfraction)
a proper fraction is a/b where a<b and b≠0

so

percent means parts out of 100
x%=x/100

so
276%=
276/100=
200/100+76/100=
2+76/100=
2+38/50=
2+19/25

2 and 19/25
6 0
3 years ago
What ratio forms a proportion with 8/36 ? <br> a. 1/4 <br> b.6/27<br> c.7/30 <br> d.2/7
Vaselesa [24]
6/27 bc (6/27)=(8/36)= 216/216= they are the same or 2/9=6/27=8/36
7 0
3 years ago
Need help with this please thanks
OlgaM077 [116]
Hmmm lemme look reply if u still need help

6 0
3 years ago
Other questions:
  • 8over 20= y over 60 what is y
    14·1 answer
  • How do you write 23.5 in word form
    6·2 answers
  • An introductory psychology class has 9 freshman males, 15 freshman females, 8 sophomore males, and 12 sophomore females. A rando
    12·1 answer
  • 17<br> Write<br> percentage.<br> 20
    8·1 answer
  • 2(3 times 3+4 times 4)
    13·2 answers
  • Help plz anyone!?This thing is due 50 points anyone!?
    10·2 answers
  • Please help me with this
    13·2 answers
  • Pls help me in this one
    5·2 answers
  • Melanie uses 8.1 pints of blue paint and white paint to paint her bedroom walls. 2/5 of this amount is blue paint, and the rest
    14·1 answer
  • Negative seven times a number is negative two hundred forty five. what is the number?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!