13 I think because they give everyone the same amount
Hello :
all n in N ; n(n+1)(n+2) = 3a a in N or : <span>≡ 0 (mod 3)
1 ) n </span><span>≡ 0 ( mod 3)...(1)
n+1 </span>≡ 1 ( mod 3)...(2)
n+2 ≡ 2 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 0×1×2 ( mod 3) : ≡ 0 (mod 3)
2) n ≡ 1 ( mod 3)...(1)
n+1 ≡ 2 ( mod 3)...(2)
n+2 ≡ 3 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 1×2 × 3 ( mod 3) : ≡ 0 (mod 3) , 6≡ 0 (mod)
3) n ≡ 2 ( mod 3)...(1)
n+1 ≡ 3 ( mod 3)...(2)
n+2 ≡ 4 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 2×3 × 4 ( mod 3) : ≡ 0 (mod 3) , 24≡ 0 (mod3)
Answer:
dad
Step-by-step explanation:
dad
Answer:
(I need to know where the seven is located/placed.) Please give a clear answer or attach a photo next time so everybody who sees your question will understand.
Step-by-step explanation:
Comparing the numbers 700, 70, and 7; the digit "7" has a different value depending on its place within the number.
7 - ones place
70 - tens place
700 - hundreds place
The place value of the 7 determines the value it holds for the number. As the place moves to the left, the value of the number becomes greater by 10 times
Answer:
- Let p be the population at t be the number of years since 2011. Then,

- The projected population of the high school in 2015=1800
- In <u>2019</u> the population be 1600 students
Step-by-step explanation:
Given: The population at Bishop High School students in 2011 =2000
Also, Every year the population decreases by 50 students which implies the rate of decrease in population is constant.
So, the function is a linear function.
Let p be the population at t be the number of years since 2011.
Then, 
So at t=0, p=2000
In year 2015, t=4, substitute t=4 in the above equation ,we get

Hence, the projected population of the high school in 2015=1800
Now, put p=1600 in the function , we get

Now, 2011+8=2019
Hence, in <u>2019</u> the population be 1600 students