Answer:
x = 2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
2(x + -5) + x = x + (-6)
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Distributive Property] Distribute 2: 2x - 10 + x = x - 6
- [Addition] Combine like terms (x): 3x - 10 = x - 6
- [Subtraction Property of Equality] Subtract <em>x</em> on both sides: 2x - 10 = -6
- [Addition Property of Equality] Add 10 on both sides: 2x = 4
- [Division Property of Equality] Divide 2 on both sides: x = 2
Answer:
The fundamental theorem of algebra guarantees that a polynomial equation has the same number of complex roots as its degree.
Step-by-step explanation:
The fundamental theorem of algebra guarantees that a polynomial equation has the same number of complex roots as its degree.
We have to find the roots of this given equation.
If a quadratic equation is of the form
Its roots are and
Here the given equation is = 0
a = 2
b = -4
c = -1
If the roots are , then
=
=
=
=
=
=
These are the two roots of the equation.
Multiply 3x*4=12x -6*4=-24 so 12x-24=24 add 24 and it would be 12x=48 divide by 12 and x=4
168/7
=24•7/7
=24
The answer is 24