The volume of the solid objects are 612π in³ and 1566πcm³
<h3>Volume of solid object</h3>
The given objects are composite figures consisting of two shapes.
The volume of the blue figure is expressed as;
Volume = Volume of cylinder + volume of hemisphere
Volume = πr²h + 2/3πr³
Volume = πr²(h + 2/3r)
Volume = π(6)²(13+2/3(6))
Volume = 36π(13 + 4)
Volume = 612π in³
For the other object
Volume = Volume of cylinder + volume of cone
Volume = πr²h + 1/3πr²h
Volume = π(9)²(15) + 1/3π(9)²(13)
Volume= 81π (15+13/3)
Volume= 1566πcm³
Hence the volume of the solid objects are 612π in³ and 1566πcm³
Learn more on volume of composite figures here: brainly.com/question/1205683
#SPJ1
a<-28 I think. Can I have a Brainliest
Answer:
cool good me hungry i am kinda hungry
Step-by-step explanation:
A) The dimensions are (x+10) by (x+10).
B) The perimeter is given by 4x+40.
C) The perimeter when x is 4 is 56.
The quadratic can be factored by finding factors of c, the constant, that sum to b, the coefficient of x. Our c is 100 and our b is 20; we want factors of 100 that sum to 20. 10*10=100 and 10+10=20, so those are what we need. This gives us (x+10)(x+10 for the factored form.
Since the dimensions are all (x+10), and there are 4 sides, the perimeter is given by 4(x+10). Using the distributive property we have 4*x+4*10=4x+40.
To find the perimeter when x=4, substitute 4 into our perimeter expression:
4*4+40=16+40=56.
X^2 + 4x + 16 is the answer