Applying the formula for the area of a sector and length of an arc, the value of k is calculated as: 27.
<h3>What is the Area of a Sector?</h3>
Area of a sector of a circle = ∅/360 × πr²
<h3>What is the Length of an Arc?</h3>
Length of arc = ∅/360 × 2πr
Given the following:
- Radius (r) = 9 cm
- Length of arc = 6π cm
- Area of sector = kπ cm²
Find ∅ of the sector using the formula for length of acr:
∅/360 × 2πr = 6π
Plug in the value of r
∅/360 × 2π(9) = 6π
∅/360 × 18π = 6π
Divide both sides by 18π
∅/360 = 6π/18π
∅/360 = 1/3
Multiply both sides by 360
∅ = 1/3 × 360
∅ = 120°
Find the area of the sector:
Area = ∅/360 × πr² = 120/360 × π(9²)
Area = 1/3 × π81
Area = 27π
Therefore, the value of k is 27.
Learn more about area of sector on:
brainly.com/question/22972014
x =
or x = - 
consider the factors of the product 6 × - 4 = - 24 which sum to the coefficient of the x- term ( + 5)
the factors are + 8 and - 3 ( split the middle term using these factors
6x² - 3x + 8x - 4 = 0 ( factor by grouping )
3x(2x - 1) + 4(2x - 1 ) ( take out common factor of (2x - 1) )
= (2x - 1)(3x + 4) = 0
equate each factor to zero and solve for x
2x - 1 = 0 ⇒ x = 
3x + 4 = 0 ⇒ x = - 
A <em>function </em>is a rule that assigns each vale of the independent variable to exactly one vale of the dependent variable.
The missing word is the function.
Point to remember:
The definition says that two values of x(independent variable ) may correspond to one value of y(dependent variable) but the vice versa is not true( means two values of y(dependent variable ) does not correspond to one value of x(independent variable) ). This explanation is very powerful tool to check that whether a relation is a function or not.
Answer:
50%
Step-by-step explanation:
if 2 is an option, then that is 1/8 probability
and the numbers greater than 5 are 6, 7, and 8
so that is 3/8
3/8 + 1/8 = 4/8 = 1/2 = 50%