Answer:
Most TP53 mutations change single amino acids in the p53 protein, which leads to the production of an altered version of the protein that cannot control cell proliferation and is unable to trigger apoptosis in cells with mutated or damaged DNA. As a result, DNA damage can accumulate in cells
D. Polarity and size.
<span>The size, polarity, and charge of a substance will determine whether or not the substance can cross the cell membrane by diffusion. The cholesterol was an example of a lipid, and is highly soluble in the nonpolar environment of the lipid bilayer. You saw, in the animation above, the cholesterol freely passing into the hydrophobic environment of the membrane. Cholesterol distributes freely in the membrane and then some fraction will dissolve in the aqueous environment of the cytoplasm. Water, on the other hand, while polar, is small enough to cross the membrane at a slow rate. Note that specialized transport proteins in certain cell membranes can provide a channel for the water, greatly increasing its rate of crossing the membrane. The lipid bilayer is much less permeable to the ion, because of its charge and larger size. As a general rule, charged molecules are much less permeable to the lipid bilayer.</span>
To inhibit cell division, such as those meant to treat cancer.
She should ask how far apart are the contractions, has your water broken, etc