Answer:
Yes, he will
Step-by-step explanation:
398.50 x .15 = 59.775
398.50-59.775=338.725
350>338.725
Hope this helps.
If not, go to: https://www.mathportal.org/calculators/financial-calculators/simple-interest-calculator.php
Answer:
Remember, a homogeneous system always is consistent. Then we can reason with the rank of the matrix.
If the system Ax=0 has only the trivial solution that's mean that the echelon form of A hasn't free variables, therefore each column of the matrix has a pivot.
Since each column has a pivot then we can form the reduced echelon form of the A, and leave each pivot as 1 and the others components of the column will be zero. This means that the reduced echelon form of A is the identity matrix and so on A is row equivalent to identity matrix.
Answer:
x^4 - 14x^2 - 40x - 75.
Step-by-step explanation:
As complex roots exist in conjugate pairs the other zero is -1 - 2i.
So in factor form we have the polynomial function:
(x - 5)(x + 3)(x - (-1 + 2i))(x - (-1 - 2i)
= (x - 5)(x + 3)( x + 1 - 2i)(x +1 + 2i)
The first 2 factors = x^2 - 2x - 15 and
( x + 1 - 2i)(x +1 + 2i) = x^2 + x + 2ix + x + 1 + 2i - 2ix - 2i - 4 i^2
= x^2 + 2x + 1 + 4
= x^2 + 2x + 5.
So in standard form we have:
(x^2 - 2x - 15 )(x^2 + 2x + 5)
= x^4 + 2x^3 + 5x^2 - 2x^3 - 4x^2 - 10x - 15x^2 - 30x - 75
= x^4 - 14x^2 - 40x - 75.
Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m