1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
2 years ago
6

What is the solution to −2x+8≥4?

Mathematics
1 answer:
Advocard [28]2 years ago
8 0

Answer: x ≤ 2

Step-by-step explanation:

(-∞,2]

Isolate the variable by dividing each side by factors that don't contain the variable.

Solve for x,

<em>then you get the </em>inequality<em> form: </em>x ≤ 2

You might be interested in
Tain has a great literary tradition that spans centuries. One might assume, then, that Britons read more than citizens of other
tresset_1 [31]

Answer:

Null hypothesis:p_{1} \leq p_{2}  

Alternative hypothesis:p_{1} > p_{2}  

z=3.02  

p_v =P(Z>3.02)=0.00127  

The p value is a very low value and using any significance level for example \alpha=0.05, 0,1,0.15 always p_v so we can conclude that we have enough evidence to reject the null hypothesis, and we can say the the proportion of Canadians is not significantly higher than the porportions of readers at Britons.  

Step-by-step explanation:

1) Data given and notation  

X_{1}=0.86*1004 represent the number of Canadians randomly sampled by Gallup that read at least one book in the past year

X_{2}=0.81*1009 represent the number of Britons randomly sampled that read at least one book in the past year

n_{1}=1004 sample of Gallup selected

n_{2}=1009 sample of Britons selected

p_{1}=0.86 represent the proportion of Canadians randomly sampled by Gallup that read at least one book in the past year

p_{2}=0.81 represent the proportion of Britons randomly sampled that read at least one book in the past year

z would represent the statistic (variable of interest)  

p_v represent the value for the test (variable of interest)

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to check if the proportion for men with red/green color blindness is a higher than the rate for women  , the system of hypothesis would be:  

Null hypothesis:p_{1} \leq p_{2}  

Alternative hypothesis:p_{1} > p_{2}  

We need to apply a z test to compare proportions, and the statistic is given by:  

z=\frac{p_{1}-p_{2}}{\sqrt{\hat p (1-\hat p)(\frac{1}{n_{1}}+\frac{1}{n_{2}})}}   (1)

Where \hat p=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{0.81+0.86}{2}=0.835

3) Calculate the statistic

Replacing in formula (1) the values obtained we got this:  

z=\frac{0.86-0.81}{\sqrt{0.835(1-0.835)(\frac{1}{1004}+\frac{1}{1009})}}=3.02  

4) Statistical decision

For this case we don't have a significance level provided \alpha, but we can calculate the p value for this test.  

Since is a one side test the p value would be:  

p_v =P(Z>3.02)=0.00127  

So the p value is a very low value and using any significance level for example \alpha=0.05, 0,1,0.15 always p_v so we can conclude that we have enough evidence to reject the null hypothesis, and we can say the the proportion of Canadians is not significantly higher than the porportions of readers at Britons.  

5 0
4 years ago
Select the expression that is equivalent to (x - 1)2.
Snowcat [4.5K]

Answer:

B.

Step-by-step explanation:

8 0
3 years ago
Find the integral<br> ∫(cos(1/x)) /x^2 dx
melisa1 [442]

Answer:

Step-by-step explanation:

∫(cos(1/x)/x² dx

put~\frac{1}{x} =t\\diff.\\\frac{-1}{x^2} dx=dt\\\int(- cos~t~)dt=-sin~t+c\\=-sin (\frac{1}{x} )+c

4 0
2 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Write a rule for each sequence. Find the next three terms.<br><br> 8,14,20,26
anastassius [24]
Aruthmetic sequene is
an=a1+(n-1)d
where d=common difference between terms
adds 6 every time
d=6
first term is 8
a1=8
8+6(n-1)
distribute
8+6n-6
8-6+6n
2+6n is answer
8 0
3 years ago
Other questions:
  • Which reasons did you include in your explanation? Select all that apply.
    5·2 answers
  • A triangle has one side that lies along the line y=1/4x and another that lies along the line y=-1/4x. Which of the following poi
    7·1 answer
  • I need help and please show work
    13·1 answer
  • What is 6.058 rounded to the nearest hundredth
    5·1 answer
  • What is the square root of 175 rounded to the nearest tenth?
    11·2 answers
  • 140% of a number is 364. Find the number
    14·1 answer
  • PLEASE HELP
    13·1 answer
  • If XY=24, XZ=22, and JQ=5, find the radius of the circumscribed circle of triangle XYZ.
    13·1 answer
  • Find the speed taken for the following journey:<br> 31.64 km in 7 hours
    11·1 answer
  • The area of the parallelogram below is square meters. (4 points) 6 m 7 m 2 m​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!