Answer:
n/6
Step-by-step explanation:
If angle bisector of angle DBC is BE. What is m angle EBC, then <DBE = <EBC
Since <ABC = <ABD+<DBC
n = 2<DBC+<DBC
n = 3<DBC
<DBC = n/3
Since <DBC = 2EBC
n/3 = 2<EBC
n/6 = <EBC
Hence <EBC = n/6
Answer:

Step-by-step explanation:
so you already have the formula, which is
![\sqrt[3]{ \frac{3v}{4\pi} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3v%7D%7B4%5Cpi%7D%20%7D%20)
the v represents Volume.
and 3v would be 3×volume.
![\sqrt[3]{ \frac{3 \times 1000}{4 \times \pi} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3%20%5Ctimes%201000%7D%7B4%20%5Ctimes%20%5Cpi%7D%20%7D%20)
![\sqrt[3]{ \frac{3000}{12.56637061} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B3000%7D%7B12.56637061%7D%20%7D%20)
![\sqrt[3]{238.7324147 }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B238.7324147%20%7D%20)

to the nearest tenth place.

C+d-3
Hope this helps if you were looking to put it into an expression!
Quotient is the result of a division.
1 - 1/x
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Integrals
- Definite Integrals
- Area under the curve
- Integration Constant C
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]:
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 6x + 19
Interval [12, 15]
<u>Step 2: Find Area</u>
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Integrals] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e