Multiply 5730 years by 2 since two half-lives have gone by for carbon.
<u>Explanation</u>:
The half-life of a radioactive isotope depicts the measure of time that it takes half of the isotope in an example decay. On account of radiocarbon dating, the half-existence of carbon 14 is 5,730 years
The half-life of carbon-14 is 5730 years.
In this manner, after
1 half-life there is 50 % = 1/2 of the first amount left.
2 half-lives there is 25 % = 1/4 of the first amount left.
25% is two half-lives.
Every 50% of life requires 5730 years.
So two half-lives require 2 × 5730
The question is incomplete as it does not have the options which are:
photoreactivation
reactivation repair pathway
nucleotide excision repair pathway
UV repair pathway
p53 repair pathway
Answer:
p53 repair pathway
Explanation:
ATM gene or ataxia telangiectasia-mutated is a gene which codes for the protein kinase involved in the DNA double-stranded break.
The DNA double-stranded break is repaired easily as the protein kinase is recruited to the site of the break where it allows the DNA repair machinery to repair the DNA.
The gene also controls the cell growth therefore this gene is important to study cancer. Since the p53 protein is a suppressor protein which if mutated is repaired by the ATM gene and if the gene becomes mutated then the p53 repair pathway is affected.
Thus, p53 repair pathway is the correct answer.
<span>On the left, they drain into the renal vein
which in turn drains into the inferior vena cava. By contrast, all the
lumbar veins and hepatic veins usually drain directly into the inferior vena cava.</span>
B.) Glucose because in order for that person to have energy that person has to have sugar to be active...
You should post the diagrams but basically there are more cells than tissues and more tissues than organs