The answer would be Asexual Reproduction. This form only requires one organism, they germinate and birth their offspring, without the need of a Female or Male, speeding up the reproduction process
Good luck :)
Answer:
Delivered small RNAs can inhibit protein A production through the RNA interference (RNAi) mechanism, and thus impairs angiogenesis
Explanation:
The pregnancy-associated plasma protein-A is a protease enzyme involved in the formation of new blood vessels by increasing insulin-like growth factor I (IGF-I) bioavailability. Moreover, small RNAs (<200 nucleotides in length, generally 18 to 30 nucleotides) are non-coding RNA molecules that function in RNA silencing through the RNA interference (RNAi) pathway. Small RNAs are widely used in molecular biology laboratories because they can be delivered into specific cells in order to silence target mRNAs such as, in this case, the mRNA encoding protein A, by complementary base pairing and thereby inducing translational repression. In consequence, mRNAs complementary to delivered small RNAs are silenced through RNAi pathways, i.e., by cleavage of the target mRNA and/or mRNA destabilization.
Answer:
The fact that you have a task set in mind is something that can make you persist. The urge to satisfy your need to finish that task with the sharp tool is what drives you to persist with using the sharp tool knowing what could be the possible outcome of using it.
Explanation:
Answer:Bisexual flowers are complete flowers, containing both androecium and gynoecium in one flower. Therefore, bisexual flowers contain both stamens and pistils in the same flower. Hence, bisexual flowers are called hermaphrodite or androgynous flowers as well.
Explanation:
The question is incomplete. The complete question is:
Question: Why do organisms without oxygen need to convert pyruvate to lactate?
A) because pyruvate is toxic to the cells
B) in order to regenerate NAD+
C) in order to use lactate in the citric acid cycle
D) because lactate is needed to produce ATP
Answer:
B) in order to regenerate NAD+
Explanation:
Kreb's cycle and electron transport chain (ETC) are the aerobic stages of cellular respiration. ETC regenerates NAD+ and FAD+ by oxidation of NADH and FADH2 produced during glycolysis and Kreb's cycle. Here, oxygen serves as the terminal electron acceptor.
Glycolytic reactions use NAD+ as an electron acceptor and produce NADH. Therefore, a constant supply of NAD+ is required to sustain glycolysis. In absence of oxygen, ETC cannot occur and organisms convert pyruvate into lactate. Pyruvate is reduced in lactate and NADH serves as the electron donor. Thereby, lactate fermentation regenerates NAD+ to continue the process of glycolysis.