2(7m-3) = 12m+1
14m-6 = 12m+1
2m = 7
m = 7/2
Answer:
The equation that represented by the line is y = -x + 2
Step-by-step explanation:
The slope-intercept form of the linear equation is y = m x + b, where
- m is the slope of the line
- b is the y-intercept (value y at x = 0)
The rule of the slope is m =
, where
- (x1, y1) and (x2, y2) are two points on the line
<em>From the given figure </em>
∵ The line passes through points (2, 0) and (0, 2)
∴ x1 = 2 and y1 = 0
∴ x2 = 0 and y2 = 2
→ Substitute them in the rule of the slope to find it
∵ m = 
∴ m = -1
→ Substitute it in the form of the equation above
∵ y = -1(x) + b
∴ y = -x + b
∵ b is value y at x = 0
∵ At x = 0, y = 2
∴ b = 2
→ Substitute it in the equation above
∴ y = -x + 2
∴ The equation that represented by the line is y = -x + 2
Answer:
Acute angles are less than 90 degrees, obtuse angles are more than 90 degrees, and right angles are exactly 90 degrees.Step-by-step explanation:
Presumably l and m are parallel, so n and p are transversals across parallel lines. They'll make the obvious congruent angles and supplementary angles (add to 180 degrees) that presumably the questions will be asking about.
1. Angle 11 and angle 16. They're what's called vertical angles from a pair of crossing lines. Vertical angles are congruent, so m∠16 = 113°
2. Angle 1 and 3. Those are corresponding angles on a traversal of parallels, also congruent. m∠3 = 78°. You got this one right, good.
3. 7 & 8. They're what's called a linear pair, so are supplemental. 180-129=51 so m∠8 = 51°. You probably just subtracted wrong on this one.
4. 10 & 11. I forgot what these are called; interior angles or some such. Anyway they're supplementary so 180-77=103. m∠11 = 103°
5. 13 & 12. I forgot the name here too but they're congruent so m∠12 = 59°
6. 2 & 7. Again congruent so m∠7 = 130°
7. I don't know why they insist on making geometry into algebra. Here we have angles 1 & 8, which are congruent, so
5x + 2 = 3x + 28
5x - 4x = 28 - 2
2x = 26
x = 13