Answer:
It's A my friend
Step-by-step explanation:
Answer:
The number that belongs <em>in</em> the green box is equal to 909.
General Formulas and Concepts:
<u>Algebra I</u>
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Trigonometry</u>
[<em>Right Triangles Only</em>] Pythagorean Theorem:

- a is a leg
- b is another leg
- c is the hypotenuse
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given variables</em>.
<em>a</em> = 30
<em>b</em> = 3
<em>c</em> = <em>x</em>
<em />
<u>Step 2: Find </u><u><em>x</em></u>
Let's solve for the <em>general</em> equation that allows us to find the hypotenuse:
- [Pythagorean Theorem] Square root both sides [Equality Property]:

Now that we have the <em>formula</em> to solve for the hypotenuse, let's figure out what <em>x</em> is equal to:
- [Equation] <em>Substitute</em> in variables:

- <em>Evaluate</em>:

∴ the hypotenuse length <em>x</em> is equal to √909 and the number <em>under</em> the square root, our answer, is equal to 909.
___
Learn more about Trigonometry: brainly.com/question/27707750
___
Topic: Trigonometry
Mary will have saved $87.50
$17.50 per three weeks
x per 15 weeks
17.50 x 5 = $87.50
Answer:
Look for perpendicular lines or corresponding angles or alternate interior angles.
Step-by-step explanation:
When you want to show that a quadrilateral is a parallelogram you need to show that the oposite sides are parallel. In order to show that two segments are parallel there are various theorems and definitions you can use.
1 - Remember that two lines perpendicular to the same segment are parallel.
2 - When two lines are cut by a secant and their alternate interior angles are congruent, then the resulting lines are parallel, I will attach a drawing to illustrate what I am saying.
3 - When two lines are cut by a secant and their CORRESPONDING angles are congruent, then the resulting lines are parallel, I will also attach a drawing to illustrate what I am saying.