If it’s asking for Volume then the answer is 226.19.
If it’s surface area then it would be 207.35
Answer:
see explanation
Step-by-step explanation:
Under a clockwise rotation about the origin of 90°
a point (x, y ) → (- y, x ) , then
(3, 3 ) → (- 3, 3 )
(3, 4 ) → (- 4, 3 )
(5, 3 ) → (- 3, 5 )
1) The function is
3(x + 2)³ - 32) The
end behaviour is the
limits when x approaches +/- infinity.3) Since the polynomial is of
odd degree you can predict that
the ends head off in opposite direction. The limits confirm that.
4) The limit when x approaches negative infinity is negative infinity, then
the left end of the function heads off downward (toward - ∞).
5) The limit when x approaches positive infinity is positivie infinity, then
the right end of the function heads off upward (toward + ∞).
6) To graph the function it is important to determine:
- x-intercepts
- y-intercepts
- critical points: local maxima, local minima, and inflection points.
7)
x-intercepts ⇒ y = 0⇒ <span>
3(x + 2)³ - 3 = 0 ⇒ (x + 2)³ - 1 = 0
</span>
<span>⇒ (x + 2)³ = -1 ⇒ x + 2 = 1 ⇒
x = - 1</span>
8)
y-intercepts ⇒ x = 0y = <span>3(x + 2)³ - 3 =
3(0 + 2)³ - 3 = 0 - 3×8 - 3 = 24 - 3 =
21</span><span>
</span><span>
</span><span>9)
Critical points ⇒ first derivative = 0</span><span>
</span><span>
</span><span>i) dy / dx = 9(x + 2)² = 0
</span><span>
</span><span>
</span><span>⇒ x + 2 = 0 ⇒
x = - 2</span><span>
</span><span>
</span><span>ii)
second derivative: to determine where x = - 2 is a local maximum, a local minimum, or an inflection point.
</span><span>
</span><span>
</span><span>
y'' = 18 (x + 2); x = - 2 ⇒ y'' = 0 ⇒ inflection point.</span><span>
</span><span>
</span><span>Then the function does not have local minimum nor maximum, but an
inflection point at x = -2.</span><span>
</span><span>
</span><span>Using all that information you can
graph the function, and I
attache the figure with the graph.
</span>
Answer:
2. the figure has rotatinal symetry
Step-by-step explanation:
Answer:
Step-by-step explanation:
a) r = √(1² + (-5²)) = √26 = 5.09901...
θ = tan⁻¹(-5/1) = 4.9097... radians
(5.1, 4.9)
b) r = - 5.09901...
θ = 4.9097... - π = 1.76819...
(-5.1, 1.8)