Because the nonagon is regular, the angles are equal. Nona means nine. The total of the measures of the interior angles of any polygon is (n-2)180. Use this formula to find the measure of one interior angle.
(9-2)180
7*180=1260. Divide by 9 to get the measure of one angle.
1260/9=140
The answer is 140 :)
<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
I thought doubling everytime except for the number 19000 because if you do 250 × 2 = 500 so then you do 500×2=1000.
If the roots to such a polynomial are 2 and

, then we can write it as

courtesy of the fundamental theorem of algebra. Now expanding yields

which would be the correct answer, but clearly this option is not listed. Which is silly, because none of the offered solutions are *the* polynomial of lowest degree and leading coefficient 1.
So this makes me think you're expected to increase the multiplicity of one of the given roots, or you're expected to pull another root out of thin air. Judging by the choices, I think it's the latter, and that you're somehow supposed to know to use

as a root. In this case, that would make our polynomial

so that the answer is (probably) the third choice.
Whoever originally wrote this question should reevaluate their word choice...
I know of two ways to solve quadratic equations. The first is through factoring. Let us take the example (x^2)+2x+1=0. We can factor this equation out and the factors would be (x+1)(x+1)=0. To solve for the roots, we equate each factor to 0, that is
x+1=0; x+1=0
In this case, the factors are the same so the root of the equation is
x=1.
The other way is to use the quadratic formula. The quadratic formula is given as [-b(+-)sqrt(b^2-4ac)]/2a where, using our sample equation above, a=1, b=2 and c=1. Substitute these to the formula, and you will get the same answer as the method above.