Answer:
2.22 g/L
Explanation:
There's a relationship using the ideal gas law between molar mass and density:
, where MM is the molar mass, d is the density, R is the gas constant, T is the temperature, and P is the pressure.
We know from the problem that MM = 32.49 g/mol, T = 458 Kelvin, and P = 2.569 atm. The gas constant, R, in terms of the units atm and Kelvin is 0.08206. Let's substitute these values into the formula:


Solve for d:
d * 0.08206 * 458 K = 32.49 * 2.569
d = (32.49 * 2.569) / (0.08206 * 458 K) ≈ 2.22 g/L
The answer is thus 2.22 g/L.
<em>~ an aesthetics lover</em>
Answer:
decreases
Explanation:
Gravirational force is directly proportional to the mass and inversely proportional to the distance.(Newton's law of gravitation)
I think Both protons and neutrons (and their anti-particles) froze out at 1013 K, about 0.0001 seconds after the Big Bang. Protons and neutrons are sub atomic particles of an atom that are found in the nucleus of an atom. Proton is the positively charge particle while the neutron has no charge. The proton positive charge accounts for the positive nuclear charge.