Answer:
Median: 36 and 1/7
Mode: 45
Range: 25
Step-by-step explanation:
33 + 45 + 38 + 27 + 45 + 20 + 45
253 ÷ 7 = 36 and 1/7
1 33
3 45s
1 38
1 27
1 20
The mode is 45.
Largest number: 45
Smallest number: 20
45 - 20 = 25
Answer:
127°
Step-by-step explanation:
Given that
Sin θ = a/b
LHS = Sec θ + Tan θ
⇛(1/Cos θ) + (Sin θ/ Cos θ)
⇛(1+Sin θ)/Cos θ
We know that
Sin² A + Cos² A = 1
⇛Cos² A = 1-Sin² A
⇛Cos A =√(1-Sin² A)
LHS = (1+Sin θ)/√(1- Sin² θ)
⇛ LHS = {1+(a/b)}/√{1-(a/b)²}
= {(b+a)/b}/√(1-(a²/b²))
= {(b+a)/b}/√{(b²-a²)/b²}
= {(b+a)/b}/√{(b²-a²)/b}
= (b+a)/√(b²-a²)
= √{(b+a)(b+a)/(b²-a²)}
⇛ LHS = √{(b+a)(b+a)/(b+a)(b-a)}
Now, (x+y)(x-y) = x²-y²
Where ,
On cancelling (b+a) then
⇛LHS = √{(b+a)/(b-a)}
⇛RHS
⇛ LHS = RHS
Sec θ + Tan θ = √{(b+a)/(b-a)}
Hence, Proved.
<u>Answer</u><u>:</u> If Sinθ=a/b then Secθ+Tanθ=√{(b+a)/(b-a)}.
<u>also</u><u> read</u><u> similar</u><u> questions</u><u>:</u><u>-</u> i) sin^2 A sec^2 B + tan^2 B cos^2 A = sin^2A + tan²B..
brainly.com/question/12997785?referrer
Sec x -tan x sin x =1/secx Help me prove it..
brainly.com/question/20791199?referrer