Answer:
0.3721 or 37.21%
Step-by-step explanation:
P(I) = 0.60; P(II) = 0.40;
P(not defective I) = 0.90; P(not defective II) = 0.80
The probability that the phone came from factory II, given that is not defective, is determined by the probability of a phone from factory II not being defective divided by the probability of a phone not being defective.

The probability is 0.3721 or 37.21%.
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>
26: <span>-90 / 5 = -18
25: </span><span>-2 / 5 = -0.4
24: </span><span>-5 / 5 = -1</span>
Answer and Step-by-step explanation:
Considering the table attached.
(a) over 9.5 kg;
μ = 8
σ = 0.9
z = 9.5 - 8/0.9 ≈ 1.67
P (Z > 1.67) = 0.5 - P(0<Z<1.67) = 0.5 - 0.4525 = 0.0475
(b) at most 8.6 kg;
z = 8.6-8/0.9 ≈ 0.67
P(Z < 0.67) = 0.5 + P(0<Z<0.67) = 0.5 + 0.2486 = 0.7486
(c) between 7.3 and 9.1 kg.
z₁ = 7.3-8/0.9 ≈ -0.78
z₂ = 9.1 - 8/0.9 ≈ 1.22
P(-0.78 < Z < 1.22) = P(0 < Z < 0.78) + P(0 < Z < 1.22) = 0.2823 + 0.3888 = 0.6711