Answer: The total number of pizzas that can be made from the given choices is 24.
Step-by-step explanation: Given that a pizza parlor offers 3 sizes of pizzas, 2 types of crust, and one of 4 different toppings.
We are to find the number of different pizzas that can be made from the given choices.
We have the <em><u>COUNTING PRINCIPLE :</u></em>
If we have m ways of doing one task and n ways of doing the second task, then the number of ways in which we can do both the tasks together is m×n.
Therefore, the number of different pizzas that can be made from the given choices is

Thus, the total number of pizzas that can be made from the given choices is 24.
<h3>
Answer: A) parabola</h3>
Some degenerate parabola cases form a single straight line, while other cases form one pair of parallel lines.
A degenerate hyperbola forms two lines that intersect at the vertex of the cone. We can rule out choice B.
A degenerate circle is a single point, so we can rule out choice C.
A degenerate ellipse is also a single point. Any circle is an ellipse (but not the other way around). We can rule out choice D.
Answer:
The length is 13 inches.
Step-by-step explanation:
To do 8 divided by two, you have use the keep change change rule, so it becomes:
8/1 times 5/2, and you just multiply out and you get:
40/2 which simplifies to
20
I want to help but i cant see the picture! tell me the question and i will solve it!