<span>Lab Safety Rules:
Report all accidents, injuries, and breakage of glass or equipment to instructor immediately. Keep
pathways clear by placing extra items (books, bags, etc.) on the
shelves or under the work tables. If under the tables, make sure that
these items can not be stepped on. Long hair (chin-length or longer) must be tied back to avoid catching fire. Wear sensible clothing including footwear. Loose clothing should be secured so they do not get caught in a flame or chemicals.<span>Work quietly — know what you are doing by reading the assigned experiment before you start to work. Pay close attention to any cautions described in the laboratory exercises</span> Do not taste or smell chemicals.<span> Wear safety goggles to protect your eyes when heating substances, dissecting, etc.</span> Do not attempt to change the position of glass tubing in a stopper.<span> Never point a test tube being heated at another student or yourself. Never look into a test tube while you are heating it.</span><span>Unauthorized experiments or procedures must not be attempted.</span>Keep solids out of the sink. Leave your work station clean and in good order before leaving the laboratory. Do not lean, hang over or sit on the laboratory tables. Do not leave your assigned laboratory station without permission of the teacher. Learn the location of the fire extinguisher, eye wash station, first aid kit and safety shower. Fooling
around or "horse play" in the laboratory is absolutely forbidden.
Students found in violation of this safety rule will be barred from participating in future labs and could result in suspension. Anyone wearing acrylic nails will not be allowed to work with matches, lighted splints, Bunsen burners, etc. Do not lift any solutions, glassware or other types of apparatus above eye level. Follow all instructions given by your teacher.Learn how to transport all materials and equipment safely. No eating or drinking in the lab at any time! </span>
Answer:
D ≈ 8.45 m
L ≈ 100.02 m
Explanation:
Given
Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)
y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)
x = 100.00 m (distance between the upper and the lower channels)
We assume that:
- the upper and the lower channels are at the same pressure (the atmospheric pressure).
- the velocity of water in the upper channel is zero (v₁ = 0 m/s).
- y₁ = 2.00 m (height of the upper channel)
- y₂ = 0.00 m (height of the lower channel)
- g = 9.81 m/s²
- ρ = 1000 Kg/m³ (density of water)
We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):
P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂
Plugging the known values into the equation and simplifying we get
Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)
⇒ v₂ = 6.264 m/s
then we apply the formula
Q = v*A ⇒ A = Q/v ⇒ A = Q/v₂
⇒ A = (350 m³/s)/(6.264 m/s)
⇒ A = 55.873 m²
then, we get the diameter of the pipe as follows
A = π*D²/4 ⇒ D = 2*√(A/π)
⇒ D = 2*√(55.873 m²/π)
⇒ D = 8.434 m ≈ 8.45 m
Now, the length of the pipe can be obtained as follows
L² = x² + h²
⇒ L² = (100.00 m)² + (2.00 m)²
⇒ L ≈ 100.02 m
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
Answer:
Boiling Point
Explanation:
When a liquid changes to a gas is called the boiling point.
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 