It seems that you have missed the necessary options for us to answer this question so I had to look for it. Anyway, here is the answer. The revival of the atomic concept was catalyzed by the experimental observation which is Constant <span>composition in compounds. Hope this helps.</span>
The density of the substance is<u> 10.5 g/cm³.</u>
The jewelry is made out of <u>Silver.</u>
Density ρ is defined as the ratio of mass <em>m</em> of the substance to its volume V<em>. </em> The cylinder contains a volume <em>V₁ of water</em> and when the jewelry is immersed in it, the total volume of water and the jewelry is found to be V₂.
The volume <em>V</em> of the jewelry is given by,

Substitute 48.6 ml for <em>V₁ </em>and 61.2 ml for V₂.

calculate the density ρ of the jewelry using the expression,

Substitute 132.6 g for <em>m</em> and 12.6 ml for <em>V</em>.

Since
,
The density of the jewelry is <u> 10.5 g/cm³.</u>
From standard tables, it can be seen that the substance used to make the jewelry is <u>silver</u><em><u>, </u></em>which has a density 10.5 g/cm³.
It is positive if that's what you are asking.
In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

where;
is the dipole moment- B is the magnetic field


Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738