The equation that relates distance, velocities, acceleration, and time is,
d = V₀t + 0.5gt²
where d is distance,
V₀ is the initial velocity,
t is time, and
g is the acceleration due to gravity (equal to 9.8 m/s²)
(1) Dropped rock,
(3 x 10² m ) = 0(t) + 0.5(9.8 m/s²)(t²)
The value of t from this equation is 24.73 s
(2) Thrown rock with V₀ = 26 m/s
(3 x 10² m) = (26)(t) + 0.5(9.8 m/s²)(t²)
The value of t from the equation is 5.61 s
The difference between the tim,
difference = 24.73 s - 5.61 s
difference = 19.12 s
<em>ANSWER: 19.12 s</em>
Which organic compound forms much of the structure of cells?
Answer: A Carbohydrates
Answer:
Explanation:
Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .
velocity of approach = 1.5 - 0 = 1.5
velocity of separation = v₁ + v₂
coefficient of restitution = velocity of separation / velocity of approach
.8 = v₁ + v₂ / 1.5
v₁ + v₂ = 1.2
applying law of conservation of momentum
m x 1.5 + 0 = mv₂ - mv₁
1.5 = v₂ - v₁
adding two equation
2 v ₂= 2.7
v₂ = 1.35 m /s
v₁ = - .15 m / s
During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.
For second collision ,
coefficient of restitution = velocity of separation / velocity of approach
.5 = v₃ + v₄ / 1.35
v₃ + v₄ = .675
applying law of conservation of momentum
m x 1.35 + 0 = mv₄ - mv₃
1.35 = v₄ - v₃
adding two equation
2 v ₄= 2.025
v₄ = 1.0125 m /s
v₃ = - 0 .3375 m / s
Answer:
A
Explanation:
absolute magnitude and luminosity vs the spectral position/ temperature
Answer:
389.78681 K
Explanation:
= Initial pressure = 55.1 mmHg
= Final pressure = 1 atm = 760 mmHg
= Boiling point
= Initial temperature = 35°C
= Heat of vaporization = 32.1 kJ/mol
From the Clausius-Claperyon equation

The normal boiling point of the substance is 389.78681 K