The surface area of the smaller solid is found to be 214 square meters.
<h3>What is Surface area?</h3>
The surface area is given as the sum of the area of all the faces of a three-dimensional object.
The same shape has equivalent ratio of the surface area to volume. It is given as:
![\rm \dfrac{\sqrt{area_1}}{\sqrt{area_2}}=\dfrac{\sqrt[3]{Volume_1} }{\sqrt[3]{Volume_2} }](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Csqrt%7Barea_1%7D%7D%7B%5Csqrt%7Barea_2%7D%7D%3D%5Cdfrac%7B%5Csqrt%5B3%5D%7BVolume_1%7D%20%7D%7B%5Csqrt%5B3%5D%7BVolume_2%7D%20%7D)
On considering the power of 6 at both the sides of the equation:
![\rm \dfrac{area_1^2}{area_2^2}=\dfrac{volume_1}{volume_2}](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7Barea_1%5E2%7D%7Barea_2%5E2%7D%3D%5Cdfrac%7Bvolume_1%7D%7Bvolume_2%7D)
Considering area 1 and volume 1 for the larger solid, and area 2 and volume 2 for the smaller solid, substituting the values give:
![\rm\dfrac{(856\;m^2)^3}{(area_^2)^3}=\dfrac{(1680\;m^3)^2}{(210\;m^3)^2}](https://tex.z-dn.net/?f=%5Crm%5Cdfrac%7B%28856%5C%3Bm%5E2%29%5E3%7D%7B%28area_%5E2%29%5E3%7D%3D%5Cdfrac%7B%281680%5C%3Bm%5E3%29%5E2%7D%7B%28210%5C%3Bm%5E3%29%5E2%7D)
By solving the above equation, the area of the smaller solid is found as 214 square meters. Thus, option B is correct.
Learn more about volume, here:
brainly.com/question/3204154
#SPJ1
C is the best choice for this
Answer: C. Establishing the Tuskegee Institute
Explanation: