Answer:
○ 1. B
○ 2. 146.25
Add the numbers
○3. (-6w) - 8 + 1 (-7w)
(-6w) -7 + (-7w)
Rearrange
(-6w) + -7 + (-7w)
(-6w) + (-7w) - 7
Solution
(-6w) + (-7w) - 7
○4. In mathematics, a rational number is a number such as −3/7 that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Every integer is a rational number: for example, 5 = 5/1
The examples and solutions to the functions are illustrated below based on the information given.
<h3>How to illustrate the functions?</h3>
1st example: The cost of a bag of rice is $100 and subsequent bags cost $95. Illustrate. the function to calculate the cost for p bags of rice.
The function will be:
C = 100 + (95 × p)
C = 100 + 95p
<u>2nd example:</u><u> </u>The cost of a pen is $5. Find the cost of s pens.
The function will be:
C = 5 × p
C = 5p
<u>3rd example</u>: Calculate the total amount for m tickets if each ticket is $20.
The function will be;
C = 20 × m
C = 20m
<u>4th example:</u> Bon bought g mangoes at $2 each and d oranges at $3.40 each. Calculate the total cost.
C = (2 × g) + (3.40 × d)
C = 2g + 3.4d
<u>5</u><u>t</u><u>h</u><u> </u><u>example</u><u>:</u><u> </u>The average age of k number of boys is 7. Find their total age.
The function will be:
a = (7 × k)
a = 7k
Learn more about functions on:
brainly.com/question/25638609
#SPJ1
3/-2
I Hoped I Helped
<span>ΩΩΩΩΩΩΩΩΩΩ</span>
Answer: c for the first part
1,6 for the second
nether for the third
Step-by-step explanation:
all on edg
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
cot(x)sec⁴(x) cot(x)sec⁴(x)
0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
0 = cos⁴(x)(1 + tan²(x))²
0 = cos⁴(x) or 0 = (1 + tan²(x))²
⁴√0 = ⁴√cos⁴(x) or √0 = (√1 + tan²(x))²
0 = cos(x) or 0 = 1 + tan²(x)
cos⁻¹(0) = cos⁻¹(cos(x)) or -1 = tan²(x)
90 = x or √-1 = √tan²(x)
i = tan(x)
(No Solution)
2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
sin²(x) - cos²(x) = sin²(x) - cos²(x)
+ cos²(x) + cos²(x)
sin²(x) = sin²(x)
- sin²(x) - sin²(x)
0 = 0
3. 1 + sec²(x)sin²(x) = sec²(x)
sec²(x) sec²(x)
cos²(x) + sin²(x) = 1
cos²(x) = 1 - sin²(x)
√cos²(x) = √(1 - sin²(x))
cos(x) = √(1 - sin²(x))
cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
x = 0
4. -tan²(x) + sec²(x) = 1
-1 -1
tan²(x) - sec²(x) = -1
tan²(x) = -1 + sec²
√tan²(x) = √(-1 + sec²(x))
tan(x) = √(-1 + sec²(x))
tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
x = 0