Answer:
0.18203 = 18.203% probability that exactly four complaints will be received during the next eight hours.
Step-by-step explanation:
We have the mean during a time-period, which means that the Poisson distribution is used to solve this question.
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
A service center receives an average of 0.6 customer complaints per hour.
This means that
, in which h is the number of hours.
Determine the probability that exactly four complaints will be received during the next eight hours.
8 hours means that
.
The probability is P(X = 4).


0.18203 = 18.203% probability that exactly four complaints will be received during the next eight hours.
12 if not just look it up on quiz lit and you’ll get it it’s on safari or use scan and solve
Answer:
See Explanation
Step-by-step explanation:
The question is incomplete as the attachment of the prism is not given.
From the attachment:
-- Length
-- Width
-- Height
Required
Determine the volume
So, the volume is:



Answer:
P = 6200 / (1 + 5.2e^(0.0013t))
increases the fastest
Step-by-step explanation:
dP/dt = 0.0013 P (1 − P/6200)
Separate the variables.
dP / [P (1 − P/6200)] = 0.0013 dt
Multiply the left side by 6200 / 6200.
6200 dP / [P (6200 − P)] = 0.0013 dt
Factor P from the denominator.
6200 dP / [P² (6200/P − 1)] = 0.0013 dt
(6200/P²) dP / (6200/P − 1) = 0.0013 dt
Integrate.
ln│6200/P − 1│= 0.0013t + C
Solve for P.
6200/P − 1 = Ce^(0.0013t)
6200/P = 1 + Ce^(0.0013t)
P = 6200 / (1 + Ce^(0.0013t))
At t = 0, P = 1000.
1000 = 6200 / (1 + C)
1 + C = 6.2
C = 5.2
P = 6200 / (1 + 5.2e^(0.0013t))
You need to change the exponent from negative to positive.
The inflection points are where the population increases the fastest.
A reasonable estimate is an educated guess made by an observer based on that person's current knowledge and following observations. For example, If Garth knew that he was 1.2 meters tall, and he observed that the door was approximately twice his own height, Garth could then make the reasonable estimate that the door is about 2.4 meters tall.