1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
2 years ago
5

X+y=7 x-y=5 solution with subsitution method

Mathematics
2 answers:
pentagon [3]2 years ago
4 0

Topic : Linear equations in two variables

\:

Given Equations,

  • x + y = 7 ----- (i)

  • x - y = 5 ----- (ii)

\:

Solution,

First of all, let us take the first equation,

\\ \longrightarrow \qquad{  {{ \sf{ x + y}   = 7 \:  \:}}}  \\  \\ \:  \:

Subracting y from both sides we get :

\\  \longrightarrow \qquad{  {{ \sf{ x + y - y}   = 7 - y \:  \:}}}  \\  \:  \:

\longrightarrow \qquad{  {{ \sf{ x }   = 7 - y \:  \:}}}  \\  \\ \:  \:

Now, Substituting the value of x in Equation (ii) :

\\ \longrightarrow \qquad{  {{ \sf{ x-y=5 \:  \:}}}}  \\  \:  \:

\longrightarrow \qquad{  {{ \sf{ (7 - y)-y=5 \:  \:}}}}  \\  \:  \:

\longrightarrow \qquad{  {{ \sf{ 7  - 2y=5 \:  \:}}}}  \\  \\ \:  \:

Now, Subtracting 7 from both sides :

\\ \longrightarrow \qquad{  {{ \sf{ 7  - 2y - 7=5 - 7 \:  \:}}}}  \\ \:  \:

\longrightarrow \qquad{  {{ \sf{   - 2y = - 2\:  \:}}}}  \\  \\ \:  \:

Dividing both sides by -2 we get :

\\ \longrightarrow \qquad{  {{ \sf{  \frac{ - 2y}{ - 2} = \frac{ - 2}{ - 2} \:  \:}}}}  \\  \:  \:

\longrightarrow \qquad{ \underline{\boxed{ \pmb{ \mathfrak{y  =  \:  \: 1}}}}} \: \bigstar\\ \:

  • <u>Therefore, The value of y is 1 </u>

Now, Substituting the value of y in Equation (i) :

\\ \longrightarrow \qquad{  {{ \sf{ x+y=7 \:  \:}}}}  \\  \:  \:

\longrightarrow \qquad{  {{ \sf{ x+1=7 \:  \:}}}}  \\  \\ \:  \:

Subracting 1 from both sides we get :

\\ \longrightarrow \qquad{  {{ \sf{ x+1 - 1=7  - 1\:  \:}}}}  \\  \:  \:

\longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{x  =  \:  \: 6}}}}} \:  \: \bigstar\\  \:

  • <u>Therefore, The value of x is 16</u>
VladimirAG [237]2 years ago
3 0

Hey ! there

Answer:

Solution of equation or we can say that value of

  • x = <u>6</u>

  • y = <u>1</u>

Step-by-step explanation:

In this question we are given with <u>two equations that are ,</u>

  • <u>two equations that are ,x + y = 7</u>

  • <u>two equations that are ,x + y = 7x - y = 5</u>

And we are asked to <u>find the solution of equation with the help of substitution method .</u>

<u>SOLUTION</u><u> </u><u>:</u><u> </u><u>-</u>

Firstly we are giving numbering to the equation so that there's ease in solving . So ,

  • x + y = 7 ----------- <u>( Equation 1 ) </u>

  • x - y = 5 ----------- <u>( Equation 2 )</u>

We can see that Equation 2 is smaller than Equation 1 . So we are using Equation 2 to find the value of x .

<u>Finding value of x from Equation 2 :</u>

  • \rm{x - y = 5}

Adding y on both sides :

  • \rm{x -  \cancel{y }+ \cancel{ y }= 5  + y}

We get :

  • \underline{ \boxed{ \rm{x = 5 + y}}} -  -  -  - (\rm{Equation \: 3})

Therefore , value of x is <u>5</u><u> </u><u>+</u><u> </u><u>y </u><u>.</u>

Now substituting value of <u>x as 5 + y</u> in Equation 1 in order to find the <u>value of y.</u> So ,

\:  \quad \:  \longmapsto  \: \qquad \: \rm{ x + y = 7}

<u>S</u><u>t</u><u>e</u><u>p</u><u> </u>1 : Substituting value of x :

\:  \quad \:  \longmapsto  \: \qquad \: \rm{ \bold{5 + y} + y = 7}

<u>Step </u>2 : Adding like terms that are y and y :

\:  \quad \:  \longmapsto  \: \qquad \: \rm{5 + 2y = 7}

<u>Step </u>3 : Subtracting 5 on both sides :

\:  \quad \:  \longmapsto  \: \qquad \: \rm{ \cancel{5} + 2y -  \cancel{5} = 7 - 5}

We get ,

\:  \quad \:  \longmapsto  \: \qquad \: \rm{2y = 2}

<u>Step </u>4 : Dividing both sides with 2 :

\:  \quad \:  \longmapsto  \: \qquad \: \rm{ \dfrac{ \cancel{2}y}{ \cancel{2}}  =  \cancel{ \dfrac{2}{2} }}

On simplifying, We get :

\:  \quad \:  \longmapsto  \: \qquad \:  \blue{ \underline{\boxed{ \frak{y = 1}}}} \quad \bigstar

  • <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>y </u><u>is </u><u>❝</u><u> </u><u>2</u><u> </u><u>❞</u>

<u>Now finding value of x </u><u>from </u><u>Equation</u><u> </u><u>3 </u><u>: </u>

<u>For </u><u>finding</u><u> </u><u>value </u><u>of </u><u>x </u><u>we </u><u>are </u><u>substituting</u><u> </u><u>value </u><u>of </u><u>y </u><u>in </u><u>Equation</u><u> </u><u>3 </u><u>.</u><u> </u><u>So </u><u>,</u>

<u>\:  \quad \:  \longmapsto  \: \qquad \: \rm{x = 5 + y}</u>

Substituting value of y :

\:  \quad \:  \longmapsto  \: \qquad \: \rm{x = 5 + 1}

Adding 5 with 1 , We get :

\:  \quad \:  \longmapsto  \: \qquad \:    \blue{\underline{\boxed{\frak{x = 6}}}} \quad \bigstar

  • <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>x </u><u>is </u><u>❝</u><u> </u><u>6</u><u> </u><u>❞</u>

<u>From </u><u>values </u><u>of </u><u>x </u><u>as </u><u>6</u><u> </u><u>and </u><u>y </u><u>as </u><u>1</u><u> </u><u>we </u><u>can </u><u>say </u><u>that </u><u>they </u><u>are </u><u>the </u><u>solution</u><u> </u><u>of </u><u>given </u><u>equations</u><u> </u><u>.</u>

<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>

Now we are checking our answer whether it is wrong or right .

<u>Equation</u><u> </u><u>1</u><u> </u><u>:</u><u> </u><u>x </u><u>+</u><u> </u><u>y </u><u>=</u><u> </u><u>7</u>

Substituting value<u> </u>of x and y in Equation 1 :

  • 6 + 1 = 7

  • 7 = 7

  • L.H.S = R.H.S

  • Hence, Verified.

<u>Therefore</u><u>,</u><u> our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>

<u>Equation 2 :</u><u> x</u><u> - y = 1</u>

  • 6 - 1 = 5

  • 5 = 5

  • L.H.S = R.H.S

  • Hence , Verified .

<u>Therefore</u><u> </u><u>,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>

<h2><u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
You might be interested in
Able, Ben and Cal each played a game able's score was six times ben's score, Cale score was a hird time of Able's score write do
Svetradugi [14.3K]

Answer:

Abel to Ben: 6

Abel to Carl: 3

Ben to Carl: 0.5

Step-by-step explanation:

First we formulate the problem in equations:

Abel = 6 * Ben

Cale = Abel / 3

If Cale's score is Abel's score over 3, so Abel's score is 3 times Cale's score.

If Abel's score is 6 times Ben's score, and 3 times Cale's score, then Cale's score is 2 times Ben's score (so Ben's score is 0.5 times Cale's score)

So, the ratio between all scores are the following:

Abel to Ben: 6

Abel to Carl: 3

Ben to Carl: 0.5

8 0
3 years ago
Read 2 more answers
Jayla bought 3 blouses at 15 dollars each the blouses were 18 percent off how much did Jayla pay in total
Feliz [49]
Jayla payed $36.90 i got this because i multiplied 3 times 15 and got 45 then i did .18 times 45 which is 8.1 (8.1 is how much will be taken off) and then i subtracted 45-8.1 and got $36.90
8 0
3 years ago
PLEASE HELP IS POSSIBLE :)
Arisa [49]

Answer: 9 inches

Step-by-step explanation:

3 0
3 years ago
I need help ASAP!!<br>Mathematics​
Ilia_Sergeevich [38]

Answer:AGC and DGH are opposite angles.

Step-by-step explanation:

So, Y+10=3x-40

Y-3x=-50-(1)

3x-40=2x

3x-2x=40

x=40

Y-3x40=-50

y-120=-50

y=-50+120

y=70

Hence, the answer is A 70°

3 0
2 years ago
∠C and ​ ∠D ​ are vertical angles with m∠C=−x+26 and m∠D=2x−10 .<br><br><br><br> What is m∠D ?
grin007 [14]

Answer:

the correct answer is 14

Step-by-step explanation:

6 0
4 years ago
Other questions:
  • 4) Which step could be completed in order to prepare the system of equations below for the elimination method?
    10·1 answer
  • Find the value of the power. 1/7 with the power of 2
    12·1 answer
  • A necklace is bought for $34 and sold for $38.25. show that the percentage profit is 12.5%
    14·1 answer
  • what 3 consecutive even numbers added together equal 42? Use the equation n+(n+2)+(n+4)=42 to help solve
    13·1 answer
  • I need help with this question.
    7·1 answer
  • Manipulate the triangle so angle A measures
    15·1 answer
  • What is the scale factor of figure b to a
    8·1 answer
  • The radius of a circular rug is 4 feet. How much ribbing will you need to buy to go around the rug? Use 3 for i.
    15·2 answers
  • The quadratic equation 4x^2 + 12x + k = 0 has equal roots. Find the value of k.
    5·1 answer
  • Look at the PDF and help plz all do all questions AND SHOW THE WORK PLZ OR IT WILL FAIL. use the standard algorithm to show it
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!