Answer:
no habla español
Step-by-step explanation:
(a) Yes all six trig functions exist for this point in quadrant III. The only time you'll run into problems is when either x = 0 or y = 0, due to division by zero errors. For instance, if x = 0, then tan(t) = sin(t)/cos(t) will have cos(t) = 0, as x = cos(t). you cannot have zero in the denominator. Since neither coordinate is zero, we don't have such problems.
---------------------------------------------------------------------------------------
(b) The following functions are positive in quadrant III:
tangent, cotangent
The following functions are negative in quadrant III
cosine, sine, secant, cosecant
A short explanation is that x = cos(t) and y = sin(t). The x and y coordinates are negative in quadrant III, so both sine and cosine are negative. Their reciprocal functions secant and cosecant are negative here as well. Combining sine and cosine to get tan = sin/cos, we see that the negatives cancel which is why tangent is positive here. Cotangent is also positive for similar reasons.
Answer:
5.66 inches
Step-by-step explanation:
a² + 7² = 9²
a² + 49 = 81
a² + 49 - 49 = 81 - 49
a² = 32
a = square root of 32
a = 5.6568 or 5.66 inches
I used the Pythagorean Theorem to solve this.
Answer:
The number generator is fair. It picked the approximate percentage of red lollipops most of the time.
Step-by-step explanation:
The other answer choices represent various misinterpretations of the nature of the experiment or the meaning of the numbers generated.
___
A number generator can be quite fair, but give wildly varying percentages of red lollipops. Attached are the results of a series of nine (9) simulations of the type described in the problem statement. You can see that the symmetrical result shown in the problem statement is quite unusual. A number generator that gives results that are too ideal may not be sufficiently random.