The question here is how long does it take for a falling
person to reach the 90% of this terminal velocity. The computation is:
The terminal velocity vt fulfills v'=0. Therefore vt=g/c,
and so c=g/vt = 10/(100*1000/3600) = 36,000/100,000... /s. Incorporating the
differential equation shows that the time needed to reach velocity v is
t= ln [g / (g-c*v)] / c.
With v=.9 vt =.9 g/c,
t = ln [10] /c = 6.4 sec.
Answer:
factors of 125 are:
1, 5, 25, 125
I'm not sure what u mean..... if you want to find hcf of a value then there has to be two value example: hcf of 125 and 225
Answer:
<em>Answer is</em><em> </em><em>imaginary</em><em> </em><em>root</em><em>s</em>
Step-by-step explanation:
On solving the above mentioned equation we get some imaginary values.
<em> </em><em> </em><em> </em><em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer:
m∠EGC=70°
Step-by-step explanation:
we know that
The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite
so
m∠EGC=(1/2)[arc EC+arc DF]
<u><em>Find the value of x</em></u>
we have
m∠EGC=(7x+7)°
arc EC=50°
arc DF=10x°
substitute and solve for x
(7x+7)°=(1/2)[50°+10x°]
14x+14=50+10x
14x-10x=50-14
4x=36
x=9
<u><em>Find the measure of angle EGC</em></u>
m∠EGC=(7x+7)°
substitute the value of x
m∠EGC=(7(9)+7)°=70°