Answer:
You will have to give more information to solve it I can't help you im sorry. :(
Step-by-step explanation:
For these questions to be true and the equation of the tangent to have an equal y to the equation of the parabola i guess there has to be a "c" and in that case integrate the equation of the tangent you will have a = 5 and b = -18 then you substitute in the equation of the parabola with the point you have you will find that "c" = 21 and so the equation of the parabola becomes y = 5x^2 - 18 x +21
Answer:
Alright so youd havee to right the terms in order which should be easy then your done! Hope this helped!
Step-by-step explanation:
Answer: -10x+7.5
Step-by-step explanation:
First multiply -2.5(4x)= -10x and then -2.5x-3= 7.5 it should be -10x+7.5
Answer:

Step-by-step explanation:
Let
, we proceed to transform the expression into an equivalent form of sines and cosines by means of the following trigonometrical identity:
(1)
(2)
Now we perform the operations: 



(3)
By the quadratic formula, we find the following solutions:
and 
Since sine is a bounded function between -1 and 1, the only solution that is mathematically reasonable is:

By means of inverse trigonometrical function, we get the value associate of the function in sexagesimal degrees:

Then, the values of the cosine associated with that angle is:

Now, we have that
, we proceed to transform the expression into an equivalent form with sines and cosines. The following trignometrical identities are used:
(4)
(5)




If we know that
and
, then the value of the function is:

