Answer:
1.1 : C - x^2 + x - 2
1.2 : A - 4a^2 - 6b^2 + 12
Step-by-step explanation:
When we have the expression p(x) - q(x), we can substitute those functions in:
(x^2 + 2x - 5) - (x - 3)
We can distribute:
x^2 + 2x - 5 - x + 3
and then combine like terms(2x & -x, -5 & 3)
x^2 + x - 2
This is the same as C.
We can start by distributing:
a^2 - 2b^2 + 3 - 4b^2 + 5 + 3a^2 + 4
Now, we can combine all the a^2 terms(a^2 & 3a^2):
4a^2 - 2b^2 + 3 - 4b^2 + 5 + 4
Then, we can combine the b^2 terms(-2b^2 & -4b^2):
4a^2 - 6b^2 + 3 + 4 + 5
and lastly, all the constants:
4a^2 - 6b^2 + 12
This aligns with option A
Answer: just graph them
Step-by-step explanation: the month is on the x axis and the money/people is in the y axis.
Answer:
1094.4
Step-by-step explanation:
assuming you want volume
Answer:
14.63% probability that a student scores between 82 and 90
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a student scores between 82 and 90?
This is the pvalue of Z when X = 90 subtracted by the pvalue of Z when X = 82. So
X = 90



has a pvalue of 0.9649
X = 82



has a pvalue of 0.8186
0.9649 - 0.8186 = 0.1463
14.63% probability that a student scores between 82 and 90
Answer:
D. 0.925x + 0.88y = 0.91(x + y)
Step-by-step explanation:
The important point to remember is that the total mass of pure silver is the same on each side of the equation.
0.925x = mass of pure silver in first alloy
0.88 y = mass of pure silver in second alloy
The final alloy has a mass of (x + y) g and is 91 % pure silver, so
0.925x + 0.88y = 0.91(x + y)