Here's the part you need to know:
(Weight of anything) =
(the thing's mass)
times
(acceleration of gravity in the place where the thing is) .
Weight = (mass ) x (gravity) .
That's always true everywhere.
You should memorize it.
For the astronaut on Saturn . . .
Weight = (mass ) x (gravity) .
Weight = (68 kg) x (10.44 m/s²)
= 709.92 newtons .
__________________________________
On Earth, gravity is only 9.8 m/s².
So as long as the astronaut is on Earth, his weight is only
(68 kg) x (9.8 m/s²)
= 666.4 newtons .
Notice that his mass is his mass ... it doesn't change
no matter where he goes.
But his weight changes in different places, because
it depends on the gravity in each place.
Answer:
.................... protons :)
Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Answer:
40 meters. look for the dot above the 20 on the x-axis and follow it over to the left.
Explanation: